Get started !
online LTE test
online C test

Updated or New
5G NR Data Rate calculator New
5G NR TBS calculator New
5G NR UE Registration New
Python programming
C++ programming
MIMO for 3GPP Developer - 2
Uplink power control
MIMO for 3GPP Developer
NR ARFCN and GSCN
5GS Interfaces



About
Feedback
Information Theory
Modulation
Multiple Access
DSP (wip)
OSI Model
Data Link layer
SS7
Word about ATM
GSM
GPRS
UMTS
WiMAX
LTE
CV2X
5G
Standard Reference
Reference books
Resources on Web
Miscellaneous
Mind Map
Magic MSC tool
Bar graph tool
C programming
C++ programming
Perl resources
Python programming
Javascript/HTML
MATLAB
ASCII table
Project Management

another knowledge site

3GPP Modem
Simulator


Sparkle At Office comic strip

Solving modulation equations

Solving modulation equations [Under GSM > GMSK modulation]

In this article, we will solve the modulation equations from earlier article so that we could plot it and get insight into mathematics behind.

Let us start with Convolution of Gaussian function h(t) with rectangular pulse of width T.

g(t) = h(t) * rect(  t  )
T

g(t) can be written as:

. t+T/2 .
g(t) = h(u) du
. t-T/2 .

and further be evaluated as


g(t) = 
 1 
( erf(
 t+T/2 
) - erf(
 t-T/2 
) )
2T δT√2 δT√2


Error function (erf) is defined as below:

. . x . . .
erf(x) = 
 
  2  
√π

 e
 
-t2


 dt
 
. . -∞ . . .
Integral of erf is:
 
erf(ax+b) dx =
 
 1 
a

 (ax+b) erf(ax+b) +
 
  1  
a.√π

 e
 
-(ax+b)2



gnuplot has function erf, so it is possible to plot equations involving erf.
erfx.png


Next step is Integral:

. t' .
G(t') = πh . g(u) du
. -∞ .

Using above formula, we can evaluate it as below:
 
G(t') = πh . (
 
 t+T/2 
2T

 erf(
 
t+T/2
δT.√2

) +
 
  δ  
√2π

 e
 
-(


t+T/2
δT.√2



)2



-
 
 t-T/2 
2T

 erf(
 
t-T/2
δT.√2

) -
 
  δ  
√2π

 e
 
-(


t-T/2
δT.√2



)2



)
 

Now φ(t') and x(t') can be plot (with gnuplot).

In next article, we will take a small example of 1 bit change.

References: GSM book by Mouly and Pautet, Wolfram online integrator, and Handbook of mathematical functions by Abramowitz and Stegun

© Copyright Samir Amberkar 2013

Case of Frequency Correction Burst « GSM Index » One bit change