Get started !
online LTE test
online C test

Updated or New
Site traffic (Aug-15)
GMSK modulation
Case of frequency correction burst
Solving modulation equations
One bit change
Normal duration burst



About
Feedback
Information Theory
Modulation
Multiple Access
OSI Model
Data Link layer
SS7
Word about ATM
GSM
GPRS
UMTS
WiMAX
LTE
Standard Reference
Reference books
Resources on Web
Miscellaneous
Mind Map
Perl resources
Magic MSC tool
Bar graph tool
C programming
ASCII table
Project Management
Simple Google box
HTML characters
Site traffic
Page view counter
5 6 9 , 6 5 9
another knowledge site

Solving modulation equations

Solving modulation equations [Under GSM > GMSK modulation]

In this article, we will solve the modulation equations from earlier article so that we could plot it and get insight into mathematics behind.

Let us start with Convolution of Gaussian function h(t) with rectangular pulse of width T.

g(t) = h(t) * rect(  t  )
T

g(t) can be written as:

. t+T/2 .
g(t) = h(u) du
. t-T/2 .

and further be evaluated as


g(t) = 
 1 
( erf(
 t+T/2 
) - erf(
 t-T/2 
) )
2T δT√2 δT√2


Error function (erf) is defined as below:

. . x . . .
erf(x) = 
 
  2  
√π

 e
 
-t2


 dt
 
. . -∞ . . .
Integral of erf is:
 
erf(ax+b) dx =
 
 1 
a

 (ax+b) erf(ax+b) +
 
  1  
a.√π

 e
 
-(ax+b)2



gnuplot has function erf, so it is possible to plot equations involving erf.
erfx.png


Next step is Integral:

. t' .
G(t') = πh . g(u) du
. -∞ .

Using above formula, we can evaluate it as below:
 
G(t') = πh . (
 
 t+T/2 
2T

 erf(
 
t+T/2
δT.√2

) +
 
  δ  
√2π

 e
 
-(


t+T/2
δT.√2



)2



-
 
 t-T/2 
2T

 erf(
 
t-T/2
δT.√2

) -
 
  δ  
√2π

 e
 
-(


t-T/2
δT.√2



)2



)
 

Now φ(t') and x(t') can be plot (with gnuplot).

In next article, we will take a small example of 1 bit change.

References: GSM book by Mouly and Pautet, Wolfram online integrator, and Handbook of mathematical functions by Abramowitz and Stegun

© Copyright Samir Amberkar 2013

Case of Frequency Correction Burst « GSM Index » One bit change